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* Physicists would like to have a theory of metallic
behavior
- Drude Model (1900, classical)
- Sommerfeld Model (1927, semi-classical)

- Band Theory (1928, quantum)

All these models treat electrons as free particles,
but electrons interact through Coulomb repulsion!
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Introduction
» Coulomb potential is not small,V ~ 1/r

* Why do nearly-free electron theories work at all?

Fermi Liquid Theory

Due to Landau, describe metal in terms of
guasiparticles instead of electrons



Fermi Liquid Theory

* Quasiparticles have same charge and spin as
electrons, but different mass and magnetic moment

* Quasiparticle wavefunctions have a one-to-one
correspondence with electron wavefunctions
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Fermi Liquid Theory

* We obtain guasiparticles from electrons by turning on
Interactions very slowly

Fermi Surface

Quasiparticles are well defined
close to the Fermi surface



Fermi Liquid Theory

* Quasiparticle Energy Functional:
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Fermi Liquid Theory

* Great agreement with experiment!
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Fermi Liquid Theory Breaks Down
* However, it's not all good news...

* Many systems where Fermi liquid theory breaks
down have been discovered since the 1980s

- Normal state of high temperature cuprate superconductors
- Rare earth alloys

- Metals near a quantum critical point

— One-dimensional Luttinger liquids

- And many more...



Fermi Liquid Theory Breaks Down
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Fermi Liquid Theory Breaks Down

* Why does Fermi Liquid theory description break
down?

e Can we build a model for the behavior of these non-
Fermi Liquid systems?



Quantum Critical Metals

Quantum phase transitions occur
at very low temperatures and are
driven by quantum fluctuations
iInstead of thermal.

Temperature

Fermi Liquid

Superconductivity

QCP
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Quantum Critical Metals

* If we try to use Fermi liquid framework we find that
the effective mass diverges due to fluctuations of
guantum order parameter

* Fermi Liquid quasiparticles have zero lifetime and are
thus not well-defined

e \What can we do?



Quantum Critical Metals
* Quantum Field Theory of course!

L~ "8, — Vi) + g(")*e* + vppT oy + re?

* Treat order parameter fluctuations as a boson U(1)
gauge field ¢

* Using renormalization group technigues one obtains
critical exponents



Quantum Critical Metals

* There can be many competing orders when
approaching a QCP:
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One Dimensional Metals
 What's special about one dimension?
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Contrast with 2D case where many different
energies are associated with a single
momentum value

In 1D energy is fully determined by
momentum at low energies
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One Dimensional Metals
 What's special about one dimension?

T
158
LB}
h '

) 4 -4 In 1D energy is fully determined by
F =—=—dreccccctoncned ofcecannad J .
.- momentum at low energies

.,
5|

Contrast with 2D case where many different . .- . .
energies are associated with a single i .
momentum value

Quasiparticle lifetime in 1D is zero at low
energies, Fermi liquid breaks down in 1D




One Dimensional Metals

* The free part of the Hamiltonian is

Hy = Z vpk(cLRck,R — C,E,Lck,,;)
k

* Interaction terms have the general form
Hmt — Z V(C])C;L+QCL/_QC]€/C]€

k,k",q
* Three dominant interactions at low energies
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One Dimensional Metals

e This Hamiltonian can be written in terms of bosonic
operators

Total charge density Total spin density
p ~ c¥c¢ s CIQ g ~ CkT e CIC¢

* Using these operators the Hamiltonian factorizes into charge
and spin sectors

H = Hcharge + Hspin

Spin and charge sectors can be diagonalized independently!



One Dimensional Metals

% 4) (i; % (i) % % % Charge density mode with velocity U

Spin density mode with velocity )
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One Dimensional Metals

Experimental evidence for spin-charge separation
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waves in the interface of a double quantum well
(Jompol, et al; Science 2009)
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Conclusion

* Strange metallic systems give rise to very interesting
collective phenomena

* Very challenging theoretically due to very strong
electron-electron interaction, competing orders at low
energies, etc

» Studying strange metals could help in fully
understanding quantum matter

e There’s a lot of work left to do!
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